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ABSTRACT

The first order perturbation technique is investigated as a tool for measuring the dynamical significance of a change in

a background flow. The focus is on estimating the change in the behavior of the linear disturbance operator as mani-

fest in both the most rapidly growing normal modes as well as initial disturbances that amplify the most over finite

time intervals (also known as singular vectors). The notion of a “small change” to a flow can be made more precise by

requiring, for instance, that the changes in the flow’s stability properties be accurately estimated using first-order per-

turbation theory. The perturbation theory updates of the eigen- and singular values are economical to compute, thus

making this determination feasible even in a practical setting. Furthermore, a simple refinement of the basic algorithm

enables an efficient updating of the singular vectors as well.

The technique is illustrated and tested for a flow having a substantial number of degrees of freedom, the global 250mb

flow during northern hemisphere winter represented in a T31 spectral space. A complete generalized barotropic sta-

bility analysis of the observed long-term mean 250mb flow is performed first. Various alterations to the flow are then

considered, and the perturbation technique is applied to estimate both the asymptotic and finite-time stability of the

altered flows. Finally, the accuracy of these estimates is checked against the complete stability analyses of the altered

flows, and an assessment is made of what a “small change” is for these cases.

It is shown that in many cases the perturbation theory estimates of the stability changes are accurate enough over a

sufficiently large parameter range to be of practical use. Applications to the problems of: (1) anticipating variations in

forecast skill associated with day-to-day variations in flow stability; and (2) anticipating the relevance and robustness

of individual normal modes are discussed. The latter problem is closely related to the concept of pseudospectra, and

perturbation theory can be used to estimate their coarse details.



3

1 Introduction

The value of an atmospheric model is ultimately determined by its ability to serve as a proxy for the real atmosphere.

Indeed, the underlying premise of many hypothetical model experiments is that the results are applicable to some

aspect of the real atmospheree.g., to some spatial or temporal region of the real atmosphere’s statistics. Accordingly,

model validation is one of the more important components of any modeling effort, yet it is often the least objectively

determined measure of a model.

The simplest model validation is done using gross statistical measures. For instance, an assessment of a model’s per-

formance in simulating present-day climatology is typically made by comparing mean flow or variance maps pro-

duced by the model with their observed counterparts. This provides the investigator with only a crude indication,

however, of whether the model simulation is a “reasonable” facsimile of the observed climatology. A more precise

determination of the significance of the differences requires the use of some objective method. If one is interested in

the differences in the mean flow itself, one could use standard statistical techniques to determine if the differences are

statistically significant. But perhaps one is also interested in how the change in the mean flow alters the evolution of

perturbations to that flow. In other words, does a perturbation evolve in a significantly different manner on the model

climatology compared to the observed climatology? In this latter case, we are interested in whether the differences

aredynamically significant.

The distinction between statistical and dynamical significance can be clarified by considering the following hypothet-

ical experiment. Suppose the difference in the basic state is such that it translates to a simple multiplicative change in

the linear operator,L, that governs the linearized dynamics of the system. It can be shown for this simplified case that

the eigenfunctions ofL do not change; only the eigenvalues scale by the multiplicative factor. Since the linear eigen-

function evolution would remain unchanged, from a dynamical perspective the basic state modification would be

irrelevant. Therefore, the difference could conceivably be made statistically significant and yet remain dynamically

insignificant.

Although somewhat contrived, the above scenario illustrates the difficulty of assessing the dynamical impact of a

change in the basic state. A large change could conceivably have no effect on the linearized dynamics, while con-

versely a relatively small change in a particular location of the basic state could lead to significantly different pertur-

bation evolution. One of the main points of this paper is to address this difficulty and suggest a dynamical definition
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for basic flow changes: we consider a basic state modification to be large from a dynamical perspective if it substan-

tially alters the stability properties of the associatedL operator.

An efficient, objective method to determine the dynamical significance of basic state differences is clearly needed.

This paper will demonstrate that the first-order perturbation technique (see, for example, Wilkinson, 1965; North et

al., 1982; Penland and Sardeshmukh, 1995) provides such a tool. The technique can also be used to address two other

common questions arising in a stability analysis:

(i)  how reliable or sensitive are the stability analysis results?
(ii) how meaningful are the individual modes?

The computational effort required to answer(i) and(ii)  in an applied setting will also be discussed.

To fix ideas, consider the archetypal linear system,

(1)

where  is the state vector of the system,L is a matrix representing the relevant discretized linear operator

and  is a time-dependent forcing function vector. Our interest is in how theL operator behaves as perturba-

tions are made to it. In this sense, we use the term “behavior” to refer to the sensitivity or robustness of the results of

a stability analysis ofL. This sensitivity may arise not only from the nature of the problem, but also due to inherent

uncertainties in the linearization. For example, because of errors in the formulation of a model, or simply not knowing

the correct basic state to linearize about, the precise definition of the operatorL may not be well known. Say

(2)

where  is the estimate of the true operatorL. Knowing how the change  affects the properties and behavior of

the trueL is at least as important as the results of the analysis on  itself.

Traditionally, much emphasis has been placed on the asymptotic stability properties of (1) as governing its behavior.

For instance, exponential (free) solutions of the linear equation (1) are sought, resulting in an eigenvalue problem,

(3)

for the complex eigenvector and eigenvalue . If the operatorL is self-adjoint the eigenvectors

and eigenvalues are pure real, and the eigenvectors can be normalized to form an orthonormal spectral basis. In this
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situation eigenspectra do, in fact, provide valuable information about the time evolution of perturbations governed by

(1). Furthermore, it can be shown that a change  of a given size can be used to determine a bound on the change in

the eigenvalues, without the need to repeat the complete eigenvalue calculation.

Unfortunately, for many meteorological and hydrodynamical applications theL operator in (1) isnot self-adjoint. The

associated eigenvectors do not form an orthogonal spectral basis by themselves. For these non-normal operators

eigenanalysis may fail to give an accurate indication of the behavior ofL, and as discussed later, may even be decep-

tive. Also, to our knowledge there is no simple method to determine a bound on the change in the eigenvalues given a

change  in a non-normalL.

As alluded to previously, the case whenL is self-adjoint simplifies the assessment of the significance of the basic state

change. The size of a given change in the matrix operator can be used to find a bound on the change possible in a par-

ticular stability parameter (e.g., the leading eigenvalue). Discussion of various aspects may be found in the classic

work of Wilkinson (1965), and in a meteorological context in North et al.(1982).

More recently, Penland and Sardeshmukh (1995, hereafter PS95) have discussed the extension of first-order perturba-

tion theory to non-normal systems and how it may be used to determine the modifications toσj, ωj, and caused by

a small change in the basic state.

To help understand question (ii), consider the forced problem (1) with . The general solution may

be written,

(4)

where ,I is the identity matrix and . As is well known, the solution, (4), will exhibit resonant

behavior ifµ happens to be an eigenvalue ofL (i.e., ). But it will also exhibit resonant-like behavior if the

quantity  is large in some sense. Hence values of  for which  is large, where  is any

chosen norm, are also important. In other words, it is equally meaningful to ask how quickly  decays away

from an eigenvalue. If the decay is slow, the emphasis on the eigenmodes of the problem may be unduly exaggerated.

To address this issue, one can appeal to the notion ofpseudospectraor spectral portraits (see, for example, Trefethen
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et al.1993). Alternatively, if a sufficiently “small” change is considered, first-order perturbation theory can be used

for substantial computational savings.

Finally, it should be noted that the implementation of the first-order perturbation theory need not be computationally

inefficient even for problems that require updating eigenvectors. While it is true that the updating of eigenvectors via

perturbation theory is anO(N3) operation (where N is the rank of the matrix), some operators permit a simplification

to the basic algorithm that greatly diminishes the number of floating point operations required, and without significant

loss of accuracy. This result makes feasible the possibility of using perturbation theory to determine certain stability

properties on a daily basis in an inexpensive and efficient manner.

The paper is organized as follows. Section 2 reviews the formulation of the first-order perturbation theory formula-

tion, drawing on the previous work of North,et. al (1982) and PS95. In the following section, results for two hypo-

thetical cases are presented, illustrating how well the theory works in a system with a large number of degrees of

freedom. Section 4 addresses computational efficiency considerations, and introduces a refinement of the basic algo-

rithm that works well for some problems. In section 5 we discuss the concept of pseudospectra and how it relates to

this work. A summary and concluding remarks are presented in section 6.

2 Governing Equations

In this section the perturbation technique is illustrated for a simple system with a substantial number of degrees of

freedom — the barotropic vorticity equation. A more complete description of the linearization and notation may be

found in Borges and Sardeshmukh (1995). For convenience, a brief version follows.

The barotropic vorticity equation may be written

(5)

whereζ is the absolute vorticity and  is the horizontally nondivergent wind. Separating variables into a time-inde-

pendent basic state and a time-dependent perturbation, equation (1) becomes,

(6)

where quadratic terms in perturbation amplitude are neglected, and we have made the “SWB” simplifying assumption
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in setting the rhs of (6) to zero as described in Borges and Sardeshmukh (1995). Expanding in a truncated series of

spherical harmonics, this may be cast into an ordinary differential equation,

(7)

The operator,L, is determined at T31 truncation giving a real matrix of rank N = 1023.

Exponential solutions to the linear equation (7) are sought, resulting in the eigenvalue problem,

(8)

for the complex eigenvector  and eigenvalue . SinceL is in general not self-adjoint, we consider

the eigenvalue problem for the adjoint,

(9)

where the asterisk denotes a complex conjugate and the adjoint operator  is defined by

for a suitable scalar product . We will use a scalar product proportional to rotational kinetic energy,

(10)

The importance of the adjoint vectors  is that they form a bi-orthogonal set with the eigenvectors ,i.e.,

. The complex eigenvector , may be expressed in geographical space in the form,

(11)

where  and  are normalized functions of longitude and latitude that are orthogonal to each other in space,i.e.,

, . (12)

2.1 Perturbation Theory

Perturbation theory permits one to determine howσj, ωj, aj andbj are modified as the basic state is changed. The der-

ivation below closely follows that of PS95.
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obtains,

(13)

Expanding in the (presumably complete) set of eigenfunctions,  provided by the numerical discretization

gives

(14)

where the summation is over all eigenmodes except thejth eigenmode. This exclusion is permissible because
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(15)
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one obtains,

(19)

Thecjj  coefficients are implicitly determined upon normalization of the updated eigenvector .

3 Results

In this section, a set of basic states is systematically varied and analyzed using eigenanalysis and singular value

decomposition (SVD). The perturbation theory estimate of the change in the stability properties is then compared

with the change determined by solving the full eigenvalue or SVD problem using standard matrix algorithms. The

basic state changes are characterized by a single parameter. The parameter range for which the perturbation theory

fails can be used to indicate when the corresponding change in the basic state can be considered dynamically signifi-

cant.

The performance of the perturbation technique in capturing structural changes is assessed using both a global and

local measure. The global measure is the “maximum pattern correlation”, defined as in Borges and Sardeshmukh

(1995, page 3787). The local measure is a normalized maximum local error in the expansion coefficient vector of the

eigenvector, defined as

(20)
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European Centre for Medium Range Weather Forecasts (ECMWF) and the National Meteorological Center (NMC).

TheECMWF dataset consists of 13 years (1979 through 1991) of global winter (DJF) data at 250mb. TheNMC DJF

dataset is based on 27 years (1965 through 1991) of Northern Hemisphere 250mb data and 14 years (1978 through

1991) of Southern Hemisphere data. The vector wind components were converted to scalar fields of vorticity and

divergence and expanded in a T31 spherical harmonic basis, as in Borges and Sardeshmukh (1995). The climatologi-

cal wintertime rotational flows used subsequently are defined as the time-average vorticity.

Figures 1a and 1b show the streamfunction and isotach representation of theNMC andECMWF climatologies,

respectively1. The experiments discussed in the following section evaluate the success of the perturbation method in

estimating the eigenvectors and singular vectors of theECMWF given those of theNMC climatology. The degree of

success can be used to assess whether the differences, which appear minor to the eye, are in fact dynamically insignif-

icant. In Section 3.3 the zonally asymmetric component of theNMC climatology is systematically varied, and the per-

turbation method is used to estimate the changes to the stability properties of these altered background flows. Figures

1c and 1d show two examples for the cases when the climatological nonzonal component is decreased and increased

by 20%, respectively.

3.2NMC and ECMWF blending experiment

The first set of experiments was designed to determine the significance of the differences between theNMC and

ECWMF analyzed DJF climatologies. The global mean rotational kinetic energy of the difference between theNMC

andECMWF climatologies is ~1 m2s-2. The energy of the difference field is nearly equally partitioned between the

hemispheres; 58% of the total energy (0.6 m2s-2) is contained in northern hemisphere latitudes.

To determine if these differences are dynamically significant, a blended basic flow was defined as

(22)

and the parameterγ varied between 0.05 and 0.95 in discrete steps.

3.2.1 Eigenanalysis

Figure 2 shows the fractional change in the growth rateσ1 and frequencyω1 of the leading eigenvalue as a function of

1. A difference map of these climatologies is also shown in Borges and Sardeshmukh (1995).

ζγ 1 γ–( )ζ
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γ. The fractional change in the growth rate (Fig. 2a) obtained by repeating the full matrix calculation for each basic

state (hatched bars) is captured quite well by the perturbation theory estimate (solid bars). Conversely, the full matrix

calculation indicates that the fractional change in the frequency (Fig. 2b) undergoes a sign reversal, which is not cap-

tured by the perturbation theory. However, the magnitude of the change is fairly small, an order of magnitude less

than the change in the growth rate.

Figure 3 summarizes the magnitude of the structural changes in the leading eigenvector. The fractional error in the

perturbation estimate (Fig. 3a) is largest for thea-phase (the most energetic phase) of the eigenmode, and approaches

0.45 near the ECWMF basic state atγ=0.95. The maximum error in theb-phase of the eigenmode is less, approaching

0.25 atγ=0.95. Figure 3b shows the pattern similarity (at the phase of the maximum pattern correlation) between the

perturbation theory estimate of the structure and that obtained from the full matrix problem. For the range ofγ consid-

ered, the maximum pattern correlation always exceeds 0.9.

According to Fig. 3b, the perturbation theory works well, whereas according to Fig. 3a it works less well. It should be

borne in mind, however, that Fig. 3a emphasizes the maximumlocal differences in the eigenmode structures. We con-

clude that perturbation theory succeeds in accurately estimating the overall change in the leading normal mode’s

eigenstructure. Therefore, from the dynamical perspective of the leading eigenmode, the differences between the

NMC andECMWF basic states should not be considered significant.

3.2.2 Singular value decomposition

The above analysis was repeated for the singular value decomposition of , forτ = 3 days. The singular

value decomposition is equivalent to eigenanalysis of the self-adjoint matrices  and

. We obtain the complete singular value decomposition using a standard matrix technique avail-

able via the NetLib2 software repository.

Figure 4 shows the fractional change in the singular values as a function ofγ. The perturbation estimates decrease the

singular value by about 20% as theECMWF basic state is approached, nearly the same as that given by the full matrix

computation of the singular values (~17%). The perturbation estimate systematically overestimates the actual change

for all γ.

2.  The NetLib repository is accessible via the World-Wide Web through the URL, “http://www.netlib.org”.

G τL( )exp=

τL†( ) τL( )expexp

τL( )exp τL†( )exp
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The structural changes are summarized in Fig. 5, in the same format as in Section 3.2.1. The normalized error (Fig.

5a) is less than that for the leading normal mode in Fig. 3a. Atγ=0.95, the error is about 19%, compared to ~45% for

thea-phase leading normal mode. The pattern correlation between the estimated leading singular vector and the

actual singular vector exceeds 0.96 for allγ, again better than that in Fig. 3b. For this self-adjoint system, the pertur-

bation estimates are more accurate compared to the non-self-adjoint system.

Again, perturbation theory succeeds in accurately estimating the change in the leading singular value and singular

structure. As such, the differences between theNMC andECMWF basic states, from the dynamical perspective of the

leading singular vector, are not significant.

3.3 Zonally asymmetric experiments

The second set of experiments was designed to examine the significance of the nonzonal component of the basic

state. A set of basic states was constructed by systematically increasing the magnitude of the nonzonal component

while keeping the zonal mean fixed,i.e.,

(23)

where square brackets denote the zonal mean, the asterisk the departure from the zonal mean, and the parameterα is

varied between 0.6 and 1.6. For reference, the global mean rotational kinetic energy of the difference of theNMC and

ECMWF basic states (1 m2s-2), discussed in Section 3.2, is equivalent to anα-value of about . The energy of

this difference field ( ), however, is not as equally partitioned between the hemispheres. For the

basic state (Fig. 1d), more than 80% of the global mean rotational kinetic energy (0.87 m2s-2) is contained in the

Northern Hemisphere. Furthermore, the local wind maxima in the ( ) difference field (not shown) are

nearly double those of theECMWF - NMCdifference field.

3.3.1 Eigenanalysis

Figure 6 shows the fractional change in the growth rate and frequency of the leading normal mode as a function ofα.

The actual change in the growth rate (hatched bars, Fig. 6a) is asymmetric aboutα=1.0 (i.e., the change forα = 1.3 is

greater than that forα = 0.7) and levels off at aboutα = 1.4. The first order perturbation theory is unable to account

for these features. The perturbation estimates are reasonably accurate for 0.7≤ α ≤ 1.3, and are slightly better forα >
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1 due to the asymmetry noted previously. Forα > 1.5, the perturbation theory predicts anO(1) change, while the

actual change is about 0.6.

The changes in the leading eigenvalue’s frequency are shown in Fig. 6b. The actual changes in the frequency (hatched

bars) are again asymmetric aboutα = 1.0, but now in the opposite sense. Consequently, the perturbation theory result

for α = 0.7 is better than that forα = 1.3. In contrast to the growth rate, the fractional changes in frequency remain

below 0.5 forα in the range 0.7≤ α ≤ 1.6.

The perturbation estimates of the leading eigenmode structure (Fig. 7) are reasonably accurate for 0.7≤ α ≤ 1.4 The

maximum pattern correlation (Fig. 7b) for this range ofα exceeds 0.8. The normalized change in the expansion coef-

ficient vector for thea-phase of the leading eigenmode (Fig. 7a, solid bars) is at 0.5 or below for 0.7≤ α ≤ 1.5. The

degradation in the maximum pattern correlation is primarily due to the larger error in the less energeticb-phase of the

leading eigenvector, particularly forα > 1.4.

3.3.2 Singular value decomposition

The fractional change in the leading singular values forα in the range 0.7≤ α ≤ 1.6 is shown in Fig. 8. As in theγ-

experiment, the perturbation estimates of the singular values are better than the leading eigenvalue over the entire

range shown. Forα ≈ 1.4 and above the perturbation theory predicts anO(1) change to the singular value, a change

that is also evident in the singular value obtained from the full problem.

The structural changes to the leading singular vector as a function ofα are summarized in Fig. 9. The maximum pat-

tern correlation exceeds 0.8 forα in the range 0.8≤ α ≤ 1.3 (Fig. 9b). The normalized error in the expansion coeffi-

cient vector (Fig. 9a) varies from 0.35 forα = 0.8 to 0.5 forα = 1.3.

4 Computational considerations

Perturbation theory updates of the eigenvalues ofL are obtained using (18), while updates of the eigenvectors are

obtained using (14) and (19). The eigenvalue updates are computationally inexpensive; for instance, a straightforward

implementation of the algorithm is about a factor of two faster than the standard SVD solvers available through the

NetLib software repository. At first sight, the eigenvector updates are not inexpensive. In general, one must perform

the sum in (14) over the entire set of eigenfunctions. This becomes anO(N3) operation, which can be computationally
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expensive. However, based on inspection of maps of the expansion coefficient amplitude, a simplification of (14) is

possible that works well for updating the singular vectors. For example, Fig. 10 shows the average amplitude along

each diagonal of the right singular vector expansion coefficient matrix as a function of the diagonal index, l. The nota-

tion is such that the average along the main diagonal is labelled by thel = 0 index, and positive or negative diagonal

indices correspond to averages along diagonals in the upper right or lower left triangular portion of the matrix, respec-

tively. The expansion coefficient matrix is sparse, with non-negligible amplitude in only a few tens of elements about

the main diagonal. Figure 10 suggests that limiting the summation in (14) to a band,J, about the original singular vec-

tors,i.e.,

(24)

will give a very good approximation of the actual perturbation theory estimate of . Accordingly, we have recom-

puted the ten leading  using this simplification withJ=10 and found that the correlation between  and

 (the original perturbation estimate obtained usingJ=1022) exceeds 0.98 in all cases. Given the substantial

computational savings and minimal loss of accuracy, this simplification may prove useful in obtaining preliminary

estimates of the change for more complex operators with a large number of degrees of freedom.

5 Discussion

We have shown how first-order perturbation theory may be used to assess the dynamical significance of a change to

the basic state, by examining to what extent the change in its stability properties can be captured by perturbation the-

ory. If the change is not accurately captured by the perturbation theory, one may regard the basic state change as

dynamically significant.

Perturbation theory can also be useful in generating “poor man’s” pseudospectra. The pseudospectrum of an operator

L extends the concept of its eigenspectrum, , defined as the set of all eigenvaluesλ in the complex planeC. In

an analogous manner, theε-pseudospectra  ofL are defined as,

(25)
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Λε L( ) z C: zI L–( ) 1– ε 1–≥∈{ }=

zI L–( ) 1– ∞= z Λ L( )∈
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solution (4), apparent resonant-like behavior of the system may be observed if  is large, even though it

may be far from resonance in the traditional sense. The pseudospectrum provides valuable information in such sys-

tems by delimiting the region of particular values ofµ in the complex plane where a large response to forcing should

be anticipated. Thus, eigenanalysis alone of non-normal operators may fail to give an accurate indication of the

behavior of theL operator, and worse, can be misleading to the investigator.

As noted by Trefethen (1992), it can be shown that an equivalent definition of  is,

(26)

Viewed from this perspective, the pseudospectrum can be used to visually reveal which eigenvalues are sensitive to

changes inL. For self-adjoint systems,  is described by the union of circles of radiusε about each eigenvalue.

In non-normal systems, however, the shape of  can differ substantially from this simple form, implying that a

relatively small change in the basic state could lead to a much larger change in the eigenvalue under consideration.

Thus, in an initial value problem as well as the forced problem the investigator must be wary of overemphasizing the

importance of a specific normal mode.

The pseudospectrum is a powerful analysis tool, but in practice the computation ofΛε can be prohibitive. In principle,

the determination of the resolvent norm, , must be repeated for each pointz in the complex domain of

interest. However, from (26) the relation to the perturbation theory discussed here is readily apparent. When the oper-

ator is not degenerate, information akin to pseudospectra may thus be obtained by appealing to perturbation theory.

Unlike the fullΛε computation, the approximateΛε obtained via the perturbation technique may be computationally

feasible for a wider range of problems.

6 Summary and Concluding Remarks

Perturbation theory is a useful tool for objectively measuring the dynamical significance of a change in a basic flow.

Our definition of dynamical significance is based upon the change in the behavior of the linear disturbance operator as

manifest in the most rapidly growing normal modes and singular vectors. The notion of a “small” or dynamically

insignificant change to a flow can be made more precise by requiring, for instance, that the changes in the flow’s sta-

bility properties be accurately estimated using first-order perturbation theory. The perturbation theory updates of the

µI L–( ) 1–

Λε L( )

Λε L( ) z C: z Λ L δL+( )∈ with δL ε≤∈{ }=

Λε L( )

Λε L( )

zI L–( ) 1–



16

eigen- and singular values are economical to compute, thus making this determination feasible even in a practical set-

ting. Our principal findings may be summarized as follows.

• Although the perturbation theory performed well in the experiments where theNMC climatology was changed

to theECMWFclimatology (i.e., the blending experiments), it performed even better in the experiments with

the nonzonal component of theNMC climatological flow changed by 20%, where the change was more

noticeable (i.e., theα-experiments withα = ). This illustrates the difficulty in trying to assess the

dynamical significance of basic state differences by visual inspection alone, a task that is better suited to the

perturbation method.

• The perturbation theory provides useful estimates of the stability parameters for changes to the nonzonal com-

ponent (with fixed zonal mean) of about 20%. For this type of basic state modification, changes greater than

about 30% should be considered dynamically significant for perturbations.

• For some non-degenerate problems, “poor man’s pseudospectra” may be obtained using perturbation theory.

The success of perturbation theory as a way to accurately estimate stability properties in a practical setting obviously

depends upon the size of the basic state changes considered. Our experience suggests that a basic state change of

~ 1 m2s-2 in the globally averaged rotational kinetic energy is small enough that stability parameter modifications can

be accurately approximated using the perturbation method. If the daily departures from a climatological basic state

(say a seasonal or monthly mean) lie within this limit, the perturbation method can be used as an efficient and power-

ful method of estimating daily fluctuations of stability properties. This possible use of the perturbation technique is

the subject of ongoing research, and could prove beneficial to operational centers that compute stability properties on

a routine basis. For example, Buizza and Palmer (1995) recently investigated the daily fluctuations of atmospheric

singular values obtained from the ECMWF Integrated Forecasting System using a Lanczos method. Since singular

vectors bound the maximum possible growth of all perturbations, this approach of varying the basic state and comput-

ing the changed singular vector structure can lead to increased understanding of the model’s potential for error growth

and how that error growth potential varies with time due to the changing background flow.

The perturbation method is also a useful tool for estimating the structural gradient of stability parameters with respect

to the background flow. The structural stability gradient can be used to geographically illustrate the smallest change

(measured by any suitably chosen norm) to a background flow that results in the largest change to a particular stabil-

ity parameter (or linear combination of them). Thus, while the singular value decomposition seeks structures that

grow most rapidly for a given background flow, the structural stability gradient indicates regions of the background

flow where the stability properties of a particular perturbation structure are most sensitive. The computational effort

of the structural stability gradient calculation is greatly reduced by an efficient means of estimating the first order

1 0.2±
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changes of the desired stability parameters. This subject will be investigated in a future study.
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List of Figur es
Figure 1: Examples of the 250mb background flows used in this study, represented by streamfunction and isotachs.
The upper panels show the (a)NMC 250mb and (b)ECMWF 250mb climatological flows. The lower panels show two
states constructed by modifying the nonzonal component of theNMC climatology such that (c)α=0.8 and (d) α=1.2

in (23). Streamfunction is contoured in thin lines at intervals of 107 m2s-1 throughout. Isotachs are drawn in thick

lines every 15ms-1, beginning at 30 ms-1.

Figure 2: The relative change in the leading eigenvalue’s (a) growth rateσ and (b) frequencyω as a function of the

parameterγ that blends theNMC 250mb andECMWF 250mb climatologies (see equation (22)). Solid bars corre-

spond to the perturbation theory estimate, and hatched bars to the eigenvalues determined by the full matrix eigenan-

alysis.

Figure 3: (a) The fractional error  of the estimated eigenvector, where  is the vector of estimated

expansion coefficients,  is the vector of expansion coefficients obtained from the full matrix solution, and  is

the infinity norm, . Solid bars correspond to thea-phase and hatched bars to theb-phase of the

eigenvector. (b) The maximum pattern correlation between the eigenvector estimated by perturbation theory and that

obtained from a full matrix eigenanalysis.

Figure 4: The relative change in the leading singular valueλ as a function of the parameterγ that blends theNMC

250mb andECMWF 250mb climatologies. Solid bars correspond to the perturbation estimate and hatched bars to the

full singular value decomposition.

Figure 5: (a) As in figure 3a, but for the estimated singular vector. (b) The maximum pattern correlation between the

eigenvector estimated by perturbation theory and that obtained from the full matrix eigenanalysis.

Figure 6: The relative change in the leading eigenvalue’s (a) growth rateσ and (b) frequencyω as a function of the

parameterα that modulates the amplitude of the zonally asymmetric component of theNMC 250mb climatology (see

equation (23)). Solid bars correspond to the perturbation theory estimate, and hatched bars to the eigenvalues deter-

mined by the full matrix eigenanalysis.

Figure 7:  As in figure 3a, but as a function of the parameterα that modulates the amplitude of the zonally asymmet-

ric component of the NMC 250mb climatology. (b) The maximum pattern correlation between the eigenvector esti-

mated by perturbation theory and that obtained from a full matrix eigenanalysis.

Figure 8:  The relative change in the leading singular valueλ as a function of the parameterα that modulates the

amplitude of the zonally asymmetric component of the NMC 250mb climatology. Shading as in figure 4.

Figure 9:  (a) As in figure 5a, but as a function of the parameterα that modulates the amplitude of the zonally asym-

metric component of the NMC 250mb climatology. (b) The pattern correlation between the leading singular vector

estimated by perturbation theory and that obtained from a full matrix eigenanalysis as a function ofα.

Figure 10: The average amplitude, , of the expansion coefficient matrix elements (see equation (14)) defined by

â
˜

a
˜

– ∞ a
˜ ∞⁄ â

˜
a
˜ ∞

x
˜ ∞ maxi xi=

cl
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(i.e., the average taken along each diagonal). The diagonal averages are shown for the leading singular vector coeffi-

cient matrices obtained in the (a)γ = 0.95 and (b)α = 1.3 cases in equations (22) and (23), respectively.

cl
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(a) Growth rate

(b) Frequency

Figure 2: The relative change in the leading eigenvalue’s (a) growth rateσ and (b) frequencyω as a function of the
parameterγ that blends the NMC 250mb and ECMWF 250mb climatologies (see equation (22)). Solid bars corre-
spond to the perturbation theory estimate, and hatched bars to the eigenvalues determined by the full matrix eigenan-
alysis.
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(a) Error norm

(b) Maximum pattern correlation

Figure 3: (a) The fractional error  of the estimated eigenvector, where  is the vector of estimated

expansion coefficients,  is the vector of expansion coefficients obtained from the full matrix solution, and  is

the infinity norm, . Solid bars correspond to thea-phase and hatched bars to theb-phase of the

eigenvector. (b) The maximum pattern correlation between the eigenvector estimated by perturbation theory and that
obtained from a full matrix eigenanalysis.
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(a) Singular value

Figure 4: The relative change in the leading singular valueλ as a function of the parameterγ that blends the NMC
250mb and ECMWF 250mb climatologies. Solid bars correspond to the perturbation estimate and hatched bars to the
full singular value decomposition.
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(a) Error norm

(b) Maximum pattern correlation

Figure 5: (a) As in figure 3a, but for the estimated singular vector. (b) The maximum pattern correlation between the
eigenvector estimated by perturbation theory and that obtained from the full matrix eigenanalysis.
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(a) Growth rate

(b) Frequency

Figure 6: The relative change in the leading eigenvalue’s (a) growth rateσ and (b) frequencyω as a function of the
parameterα that modulates the amplitude of the zonally asymmetric component of the NMC 250mb climatology (see
equation (23)). Solid bars correspond to the perturbation theory estimate, and hatched bars to the eigenvalues deter-
mined by the full matrix eigenanalysis.
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(a) Error norm

(b) Maximum pattern correlation

Figure 7:  As in figure 3a, but as a function of the parameterα that modulates the amplitude of the zonally asymmet-
ric component of the NMC 250mb climatology. (b) The maximum pattern correlation between the eigenvector esti-
mated by perturbation theory and that obtained from a full matrix eigenanalysis.
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(a) Singular value

Figure 8:  The relative change in the leading singular valueλ as a function of the parameterα that modulates the
amplitude of the zonally asymmetric component of the NMC 250mb climatology. Shading as in figure 4.
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(a) Error norm

(b) Maximum pattern correlation

Figure 9:  (a) As in figure 5a, but as a function of the parameterα that modulates the amplitude of the zonally asym-
metric component of the NMC 250mb climatology. (b) The pattern correlation between the leading singular vector
estimated by perturbation theory and that obtained from a full matrix eigenanalysis as a function ofα.
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(a) γ = 0.95

(b) α = 1.3

Figure 10: The average amplitude, , of the expansion coefficient matrix elements (see equation (14)) defined by

(i.e., the average taken along each diagonal). The diagonal averages are shown for the leading singular vector coeffi-
cient matrices obtained in the (a)γ = 0.95 and (b)α = 1.3 cases in equations (22) and (23), respectively.
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